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We have computed the wave-vector-dependent frequency moments of the spectral line shape, $(K,w),
of a Heisenberg paramagnet with isotropic exchange interaction of arbitrary range. The results are specialized
to RbMnF3 at T'=3.5Ty. Using the phenomenological representation of a two-parameter Gaussian dif-
fusivity, the spectral line shape 8 (K,w) is constructed. The theoretical results are compared and found to be
in satisfactory agreement with the experimental data of Windsor, Briggs, and Kestigian.

I. INTRODUCTION

OME time ago, Van Hove! showed that the fre-
quency and wave-vector distribution of the
scattered neutron spectrum images the cooperative
dynamical properties of the many-body scatterer. The
scattered neutrons undergo two types of scattering:
nuclear scattering and magnetic scattering. The former
is caused by the interaction of the neutron with the
nuclei of the scatterer through the intermediary of
purely nuclear forces. For slow neutrons, the nuclear-
scattering cross sections are typically of the order of
magnitude of one barn. The magnetic scattering arises
because the neutron has a finite magnetic moment
which interacts with the magnetic moment of the atom.
If the constituent atoms of the scatterer do not possess
any effective magnetic moment density then clearly the
latter type of scattering would be absent. However, for
systems which are magnetic such a scattering is
typically of the same order of magnitude as the nuclear
scattering.?

Due to the rather distinct origins of the two types of
scattering mentioned above, it is often possible to differ-
entiate®* between the two. In any event, for present
purposes we assume that such is indeed the case and
address ourselves only to the study of some aspects of
magnetic scattering.

The thermodynamics of interacting many spin
systems is in general too complicated to be exactly
soluble. Of the many approximate solutions which are
known only the ones relating to low temperatures®7
and to high temperatures® are reliable. The dynamics of
these systems (which is even more complicated than
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the thermodynamics) is, of course, known even less
reliably. At very low temperatures, where the system
is well described in terms of quasi-independent Boson-
like elementary excitations (i.e., spin waves), the
frequency-wave-vector-dependent susceptibilities have
recently been calculated to a high degree of precision.®

In the opposite temperature limit, i.e., T —o, the

situation is less satisfactory and except for some exact
model calculations,”® only phenomenological analyses
have thus far been carried out.!'=%7

At the elevated temperatures assumed in Ref. 17,
the system is almost completely random. As the tem-
perature is lowered to finite values, the constituent
spins of the magnetic system experience the presence
of short-range order (SRO). The effects of SRO upon
the spin dynamics (i.e., as exhibited by the frequency
wave-vector dependent susceptibilities measured by
inelastic neutron scattering experiments), however,
have not been analyzed even in terms of the phenomeno-
logical concepts used for infinite temperature.!®

For magnetic systems with strong exchange coupling,
the neutron-scattering experiments are usually per-
formed at temperatures not much higher than a few
times their magnetic critical temperatures. Under these
conditions, the presence of the SRO may be expected
to make important contributions.®
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1 SHORT-RANGE-ORDER EFFECTS IN NEUTRON- - -

In the present paper we attempt to study the SRO
effects upon the dynamics of paramagnets. We assume
that these paramagnets are well described by a Heisen-
berg localized spin Hamiltonian. Our work is subject
to several distinct types of approximations. First, we
construct the dynamical line shapes by using a phe-
nomenological approximation which relies only upon
the knowledge of a few low-order frequency moments.*
The relevance of this phenomenological procedure for
studying the long-wavelength small-frequency dynamics
of Heisenberg paramagnets was suggested by Bennett
and Martin?® and has proved useful in the discussion
of the structure of the results even in the neighborhood
of the critical point.2! Moreover, in the extreme para-
magnetic regime, the adequacy of this representation
for studying the behavior of the frequency wave-vector-
dependent susceptibilities for all wave vectors and
frequencies has now been fully discussed for the case of
elevated temperatures.!” For the present it suffices to
say that on the whole this procedure seems to give
reasonable results for intermediate and high frequencies
(i.e., for short and intermediate times), while for small
frequencies (i.e., long times), the results are likely to be
only qualitatively correct.??

The second type of approximation to be used in the
present work pertains to the determination of the
frequency moments themselves. In the literature!415.17
the relevant frequency moments have been computed
in the limit that the system temperature T'—. Of
course, when the system temperature is at least several
times T, or higher, it may be an adequate approxi-
mation to ignore the remaining terms in the relevant
series expansion in powers of 7',/7. The experiments of
interest are, however, often carried out at temperatures
such that the ratio 7,/T is of the order of 2 to . Under
these circumstances, it is necessary to compute the
first few terms in the series expansion in powers of
T./T, if the moments are to be determined to adequate
accuracy. In the present work, we have computed the
zeroth frequency moment (w’)x exactly to the order
(T./T)%, the second frequency moment {w?)x to the
order (7T./T)3 and the fourth frequency moment
(w*x to the order (7T'./T).

In addition to the above two approximations, we
have also assumed the lattice to be rigid. This approxi-
mation would, of course, have no important effects
upon the results if the spin degrees of freedom were
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moments by themselves does not enable one to construct a unique
lineshape for any finite frequency interval. [See for example,
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logical theory of lineshapes where the actual functional form of the
lineshape has been derived from intuitive, physical arguments.
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completely independent of the lattice degrees of freedom
because then from the experimental slow neutron-
scattering data one could (in principle) separate the
contributions arising from the lattice vibrations alone.
(Note also that in this idealized limit the phonon
scattering would arise only due to neutron-nucleus
interactions.) In practice, the thermal motion of the
atoms in the lattice is implicitly dependent upon the
fluctuation of the spin on the atoms and consequently
the magnetic scattering of neutrons also contains
contributions from the lattice vibrations. Such a
magnetovibrational scattering may sometimes be com-
parable to the strictly magnetic scattering?® and there-
fore its contribution to the line shape could then be
important. In the paramagnetic regime, however, the
hope is that the major contribution from magneto-
vibrational effects will be nearly elastic* and will
therefore affect the structure of the line shape only in
the vicinity of the zero frequency.

Using the techniques discussed in Ref. 17 we have
constructed a theoretical line shape for a paramagnet
at a few times its critical temperature. These theoretical
results are compared with the neutron-scattering experi-
mental results of Windsor, Briggs, and Kestigian® on
RbMnF;atabout 3.5Ty. The agreement of the resultant
parameter-free theoretical results with the corresponding
experimental data is generally fair, except at small
energy transfers (i.e., at small frequencies) where the
consequences of our assumption regarding the absence
of magnetovibrational interactions is likely to be the
most serious. Moreover, there is also the possibility
that some of the discrepancy between the theoretical
and the experimental results may in part be due to
one of the following causes: First, the crudeness of our
phenomenological approximation for the line shape is
likely to be especially pronounced in the vicinity of
w — 0 where the long-time behavior of the system makes
important contributions to the line shape. (Note that
guessing precisely the form of the long time behavior
of correlation functions from the knowledge of a few
low-order frequency moments, i.e., from the known
behavior of the correlation functions for very short
times, may indeed be expected to be somewhat un-
reliable.) Secondly, the rather short high-temperature
series used here may quite possibly not embody all the
relevant SRO effects.

The organization of the paper is as follows. In Sec. II
we record some preliminary considerations regarding
the theory of inelastic magnetic neutron scattering
and its application to paramagnetic Heisenberg-spin
systems such as RbMnF;. We also introduce the concept
of frequency moments and indicate how the presence
of SRO causes the shape of §(K,w) to be asymmetric
in w.

The frequency moments are computed in Sec. III.
The influence of the SRO on these moments is examined

%2 R. J. Elliott and R. D. Lowde, Proc. Roy. Soc. (London)

A230, 46 (1955).
% R. D. Lowde, Proc. Roy. Soc. (London) A235, 305 (1956).
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in detail for the particular case of a simple cubic,
nearest neighbor Heisenberg paramagnet (with anti-
ferromagnetic ground-state ordering) at 7'=3.5T.
This case corresponds closely to that of RbMnI'; under
conditions of the experiment reported by Windsor,
Briggs, and Kestigian.?®> Some general remarks about
the influence of the SRO on the line shape are made
through the examination of these moments.

Using the phenomenological approximation described
in our previous work,!? the line shape is constructed in
Sec. IV. The results are again specialized to the case of
RbMnF; under the aforementioned conditions. The
theoretical results are then compared with the corre-
sponding experimental results of Ref. 25.

The concluding Sec. V contains a discussion of the
results derived in the preceding sections.

II. PRELIMINARY CONSIDERATIONS

When slow neutrons are scattered from many-body
scatterers, they typically undergo energy and mo-
mentum transfers of the same order of magnitude as
the energies and momenta of the elementary excita-
tions in these systems. For such scattering the first
Born approximation holds very well?® and the spectrum
of the scattered neutrons is then described by a two-
body space-time-dependent statistical correlation func-
tion of the scatterer.! For the paramagnetic system
under discussion here, if we assume that the spin and
the lattice degrees of freedom are uncoupled,? then the
differential magnetic scattering cross section, per unit
energy interval and solid angle of the outgoing neutrons,
has thef}following form! for unpolarized incident
neutrons:

&’ .o
_—— =Np (kyk,) Z (5a,a' —KaKa')Saa'(K?w) ’
A AR a

(2.1)

r—
o, A=Y, Y, 3,

where k and k’ are wave vectors of the incident and the
scattered neutrons, respectively, £ and E’ are their
corresponding kinetic energies, and K and w are the
momentum and the energy loss suffered by the scattered
neutrons, i.e.,

K=k—¥,

e E I (2.2)

(throughout we use Dirac’s units where #=1). The
function p(k,k’) is simply related to the total free-spin
scattering cross section Ne (e is equal to about 0.292 b),
and the neutron scattering form factor f(XK) of the
scattering atoms in the following way:

p(kK)=Na(k'/k)| f(K)[*. (2.3)

The function $**'(K,w) is the momentum-frequency
Fourier transform of the spin-correlation function of the

25 C. G. Windsor, G. A. Briggs, and M. Kestigian, Proc. Phys.
Soc. (London) 1, 940 (1968).

26 Unless repeated scattering processes become likely as for
example happens in nuclear reactor piles.
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scattering system:

1 450
s (Kjw) = — 3" ¢iKR / e (S(0)S ¥ (1)) (2.4)

T R e

The angular brackets in the right-hand side of Eq. (2.4)
denote a canonical average over the density matrix of
only the spin degrees of freedom of the scatterer,” i.e.,

(-+-y=Tr[eBse- -]/ TreFse. (2.5)

We assume the Hamiltonian JC to be of the isotropic
Heisenberg form, i.e.,

=—3 I(fif2)Ssn-Sy,.

f1,12

(2.6)

While much of the following analysis will be quite
general and will apply to the case of arbitrary spin
magnitudes, arbitrary lattice dimensionality and arbi-
trary range of the exchange interactions, I(j1fs), in
order to particularize the discussion to the case of
RbMnF; we later assume a three-dimensional simple
cubic lattice with S=4%, restrict the range of 7(J1/2) to
only nearest-neighbor distance when it will be assumed
to have the magnitude /= —0.28 meV.25:28

Under the isotropic Hamiltonian (2.6) correlation
82¢’(K,w) is diagonal in the indices a and o’. Moreover,
in the paramagnetic state, these diagonal correlations
are the same for all o’s and as such it suffices to consider
only one of the correlations, e.g., $*(Kw).

Using the fluctuation-dissipation theorem,” it is
convenient to relate the function $##(Kw) to the
spectral function F(Kw), i.e.,

8 (Kw)=F(Kw)/(1—eP), (2.7a)

where

F(Kw)=F(—K, w)=—F(£K, —w)

+DO
= ;;% eiK-R/;@ dietet
XS O),S= ()] (2.7b)

Because of the evenness of the function F(Kw)/w in w,
all of its odd frequency moments will trivially vanish.
Its even-frequency moments {(w?*)x, i.e.,

e [ [ o

can in the usual fashion be computed in terms of time-
independent statistical correlation functions for which
a well-defined high-temperature expansion scheme
exists.’®7 These moments are given in Sec. III.
For the present, it is only necessary to record the
relationship of the moments {w?*)x to the frequency
moments of the actual line shape $(Kw). This is
achieved by a straightforward expansion of the de-

2.8)

27 This assumes the absence of all magnetovibrational contri-
butions to the scattering.

28 C. G. Windsor and R. W. H. Stevenson, Proc. Phys. Soc.
(London) 87, 501 (1966); C. G. Windsor, ibid. 89, 825 (1966).
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nominator of Eq. (2.7a) in powers of Sw, i.e.,
4

Wi @ = 3(w?) g+ 13 w2 — — ()
240

6

+

(@84 -+ (2.9a)

10080
wK(2n+1) — —%ﬁ(w2"+2)x+ vy, (29b)

where we have used the following notation for the
moments of the line shape $(K,w):

+DO
/ S(K,w)w" dwEkBTwK“‘) . (29C)

Clearly, in the limit of infinite temperatures 88**(K,w)
and F(K,w)/w coincide and the line shape $**(K,w) is
symmetric in w. However, at finite temperatures, the
additional terms proportional to higher powers of g8
have also to be retained. When this is done, even
moments of 882?(K,w) turn out to be the same as those
of F(K,w) to the first two dominant powers of 8. [See
Eq. (2.9a).] For noninfinite temperatures, i.e., where
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SRO effects are taken into account, the function
8##(K,w) is no longer even in w and therefore also has
finite odd moments. These moments are in general
smaller than the even moments by a factor 8 and are
proportional to the next higher-order (even) moments of
F(K,w)/w [see Eq. (2.9b)].

III. FREQUENCY MOMENTS

We have calculated the frequency moments, (w**)x,
n=0, 1, 2, under the Hamiltonian (2.6). The procedure
for the computation of these moments is in essence
similar to that used for the calculation of the infinite
temperature results.? The essential difference is that for
finite temperatures the density matrix, p,

p=ePX/Tre F%, 3.1)

has to be duly computed to the desired accuracy in the
power expansion of 8, whereas for infinite temperatures
it could be replaced by the first term —g3C/Tr[1].

The details of computation are understandably ex-
ceedingly tedious. For brevity therefore we only record
the final results here: We get

(@) =BX+B2X? Y e R (R)+FT4X° ¥ ¢ RI(A)(R—A)—3X? ¥ (¢ R+14)]
R R,A R

+p3418X*% 3. eX-RI(A)I(B)I(R+A+B)—16X*

R,A,B

2 ¢ XRI(R)I?(A)
R,A

2 IR)I(A)(R—A)(—3X3—8X*)+4X? T ¢ RI2(A)(I(R—A)—I(R))
R,A R,A

6 8 2 2 4
+3 [(—X‘*—}— -X34 —X2>eﬂ<~R+ —Xs——X{Iﬁ(R) ] +o(8%), (3.2)
R 5 5 515

5

(Hx=8BX23 (1—e® R)I2(R)+1682X3 > (1—e® R)I(R)T (A)I (R—A)—482X2 3" (1—eXR)[3(R)
R R,A R

+ %ﬁal:z (1_eiK-R)I4(R)<2_6_X4+ §X2>-96X4 S (1—eXR)[2(R) Y I2(A)
3 LR 5 5 R A

—8X3% % (1—e®R)[2(R)I(A)I (R—A)+48X*

(whe

328X3

> (1—eiK‘R)I(R)I(A)I(B)I(R+A+B)]+o(ﬁ“), (3.3)

R,A,B

=§(eiK'R— DIAR)(441/2X)+ 2 {IP(R)(1 —e®R)[2(A) (7 — 3% -4)
R,A

421 (R)I (A)I (R—A)[2¢% R (R—A) — ¢ R (R)—I (R) T}
16
+ YT (A" HIR)+26X T I:Z(I(R)I(A))QI(R—A) (- (R—A) 41 — 2% R)

84
+AT3(R)I2(A) (¢ R —1 — i+ R-A) | oiK-A) |- ?(eiK'R—1)]3(R)I(A)I(R—A)]

+28X X [T(A) (R)I (B)I (R+A)T(R+B)(—3¢ RA6eiK- RHA) ) _ giK- (R+ALD)
R,AB

+ 2 (I (A)I (B) )21 (R) (261'1( - (R+B) __ eiK +(R+A+B) e'[K .R)
4212 (R)T (A)T (B)I (A+R+4B) (— ™ R3¢k (R-A) _ 27K -B)
4212 (R)I (A)] (B)I (A—B) (6 — 567 R —5¢iK B3¢ (A+R) | oiK - (A+3))]

2 See for example Refs. 14 and 17.
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136
- 2 IR+ § T [(1—e ®0) I R)(A)Y] (R+A)
+I3(R)I (A)I (R+A) (7¢™ R —4¢K-A_3) L [3(R)I?(A) (107K R — 14 — 8K (R+A) | 124K -4) ]

7
+ L S —em R o). ()
40X Rr

The foregoing results, i.e., Egs. (3.2)-(3.4), are valid for arbitrary range of the exchange interaction 7(R) and
for arbitrary lattice structure and dimensionality. While this general form is useful to record, for the problem in
hand we need to specialize to the case of a simple cubic lattice with lattice constant @, and only nearest-neighbor
exchange interaction /. Because the relevant algebra for obtaining this specialization is somewhat tedious to carry
out from the results for the general case listed in Egs. (3.2)-(3.4), we give below the final form of the relevant

expressions,

(" =BX[1+30C+62(C2— (C+42)/216X)+6[C?/27—29C/ 270+ (4C2—56C/5+2) /432X

; 2 +EC—3)/432X7]+0(09], (3.5)
(wz)x=16[3[2X.2(3—C)[1— — (2044-1/Xx2)+ (03):| , (3.6)
i 24X | 2160 ’
W/ K
IZS,BI“X“ =(3—-C)(19—-3C—1/4X)+%6[ —4C34-20C?*— (289/5)C+57/5+6(C2+C2+C,2)
+24(C.Cy+C.C.4-C,C.) 1+ (0/12X) (—111/54(97/5)C —4C2)+70(3—C) /960X2~+4(6%), (3.7)
where dependent terms. For convenience, in the case of even-
X=315(S+1), (3.8) order moments, these additional contributions have
— been listed as percentages of the infinite-temperature
6=12X81, (3.9) moments. Because the odd-order moments are vanish-
Co=cos(K »ap), Cy=cos(Ka9), C,=cos(K.ap), (3.10) ingin the limit of infinite temperature and because their
_ temperature corrections are determined in terms of
C=CatCytC.. (3.11) the even-order moments, we have not listed them

Using Eqgs. (2.9a)-(2.9¢) we can now find the frequency
moments of the spectral line shape $(Kw), i.e., wx ™.
When this is done we find that the result for wg®
is in disagreement with that given by Sears.’® (Sears’s
result is also quoted in Refs. 15 and 25. Note that
Sears’s result can be taken over to find our wx® and
wg® to the first two dominant powers in 8 and our
disagreement with his result arises® only in the order
B? for wg®. Note also that we have computed our
results to one additional order in g, i.e., to 8, for wg @
and two additional orders in 8, i.e., to 84, for wg©® than
the corresponding results of Sears for the isotropic
Hamiltonian being used here.)

To get a feel for how the line shape, $(Kw), changes
due to the presence of SRO, we have used Egs. (2.9a)-
(2.9c) and (3.5)-(3.7) to convert to the frequency
moments wg ™. For the special case of a simple cubic
antiferromagnet with only a nearest-neighbor isotropic
Heisenberg exchange, 7=—0.28 meV, S=$, at a tem-
perature of 293°K, the results for the corresponding mo-
ments are given in Tables I and II. To get an estimate
of the convergence of the high-temperature series
expansion for the relevant moments, we have listed the
contributions arising from the various additional 8

0 It is interesting to note that if one made the mistake of
assuming quantum mechanical traces of the form Tr(S,25,%S,%)
to be vanishing, one would get the same result as recorded by
Sears for the Heisenberg Hamiltonian without single ion anisot-
ropy, i.e., for the Hamiltonian that is being used here.

separately. The various K values used in these tables
were chosen to correspond to the actual cases studied
experimentally by Windsor et al.25

A perusal of Tables I and II readily leads to the
following conclusions: For small K values (henceforth
K denotes only the reduced wave vector)?® the first SRO
correction to the zeroth moment, wg®, is always
negative and is typically of the order of 30%. The
second SRO correction to wg® is positive and is
typically 4rd to 1th of the first-order correction. The
third-order correction to wg® is again negative and is
typically about #5th to 1/15th the first-order correction.
The high-temperature series for wg® is therefore
adequately convergent and therefore for small K we
may expect the over-all effect of SRO to be a reduction
of the area under §(K,w) of about 209,

The first SRO correction to the second moment is
always slightly positive, being about 0.55%, for all K
values. (Note that because this correction is so small,

31 Because of the fact that §(K,w) is the inverse lattice Fourier
transform of the spin correlation function relating to a simple
cubic lattice, therefore it has the periodicity of the reciprocal
lattice which is also simple cubic in structure. It is convenient to
replace the wave vector K by the reduced vector equal to K—=,
where 7 is the corresponding vector to the center of any of the
nearest reciprocal-lattice zones. Note that in contrast to the full
paramagnetic lattice, the antiferromagnetic real lattice has the
symmetry of an fcc lattice and as such the relevant inverse lattice
has body-centered-cubic symmetry. No confusion should be caused

by our using the same symbol, K, for both the wave vector and the
reduced wave vector.
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the accuracy of the Marshall-Lowde!® statement, which
was based on Sears’s erroneous observation that the
first SRO to wg® for a nearest-neighbor isotropic
Heisenberg paramagnet is zero at all temperatures, is
not materially affected.) The second SRO correction
to wx® is only slightly K dependent and is generally
of the order of about 29, of the infinite-temperature
value. The convergence of our high-temperature series
is therefore somewhat unimpressive for wg® but on
intutive grounds we do believe that the higher-order
corrections (if computed) would not alter the result of
the first two corrections too drastically. In any event,
it is reasonable to assume that the SRO changes the
second frequency moment by only a modest amount,
i.e., at the temperature of interest, 7'=3.5T'y, the SRO
modifications will be a few percent only.

For the fourth-frequency moment wg®, we have
computed only the first-order SRO correction; the
computation of additional corrections being exceedingly
tedious. The correction is relatively moderate, i.e.,
about 8-9%,. Unfortunately, no reliable statements can
be made about the size of the additional SRO correc-
tions and we as such only make a somewhat innocuous
assumption that the relative change in the fourth
moment due to the SRO is somewhat smaller than that
for the zeroth moment and somewhat larger than that
for the second moment.

In view of the above discussion it is clear that for
small values of K (to which the above remarks relate)
the effects of the SRO are largely to deplete the area
under $(K,w) near the center, i.e., for small frequencies.
Since the higher-frequency moments are less sensitive
to changes of the shape close to the center one might
expect that only a small fraction of the depleted area
near the center is distributed to regions of somewhat
higher frequencies. This crude picture would then

TaBre 1. Finite temperature corrections to the frequency
moments of §(K,w) for small K-vectors (see Fig. 1). These correc-
tions are expressed as percentages of the infinite temperature
moments and refer to the case of interest, i.e., a simple cubic
Heisenberg paramagnet with nearest-neighbor isotropic exchange
(I=—0.28 meV), T'=3.5Tw, S=4, and lattice constant=4.240 A.
The notation used is such that A, represents the first temperature
correction to the nth frequency moment of §(K,w) given as
percentage of the infinite temperature result, A, the second
correction similarly expressed as percentage of the infinite tem-
perature result and so on. A,T represents the total percent correc-
tion to the nth frequency moment of §(K,w) from the terms
calculated. The first correction to the second frequency moment
of §(K,w), i.e., Ay, is always 0.55%. Therefore AT =A,""+0.55.
Since we have calculated only one correction to the fourth mo-
ment, AJT=A,'. We have taken the K vector to be along the line
K,=K, with K,=0 so that Ky10=V2K,=|K|expt (the subscript
expt denotes experimental).

K110=0.08 K;10=0.16 K1;0=0.26 K;10=0.35
Ao —38.08 —35.88 —31.39 —25.86
Ao’ 13.48 11.85 8.84 5.69
A" — 3.69 — 2.88 — 1.56 0.45
AT —28.29 —26.91 —24.11 —19.72
Ap 1.90 1.93 1.98 2.04
A 8.87 9.12 9.17 8.56
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TasBLE II. Same as in Table I except that this table refers to
larger K vectors (see Fig. 2). The experimental data on the
scattering is again taken in such a way that K lies in the 110
plane. However, now the K-values used in the theory are such
that Ki10=V2ZK;=|K|expt and K,=|K,|expt. The experimental
K-components are always within 0.1 A of the listed values.

Ko K,= 0.1 0.3 0.5 0.7
0.1 Ay —36.50 —28.52 —17.96 —11.97
Ao 12.30 7.12 2.24 0.46
Ao’ — 3.10 — 091 0.33 0.44
AT —27.30 —22.31 —15.39 —11.07
Ay 1.92 2.01 2.13 2.19
A 8.98 9.67 8.43 6.94
0.3 A —27.89 —19.91 — 9.35 — 3.36
Ao’ 6.77 2.97 — 0.10 — 0.85
A" — 0.79 0.21 0.40 0.17
AoT —21.91 —16.73 — 9.05 — 4.04
Ay 2.02 2.11 2.22 2.29
A 8.62 6.76 3.94 1.95
0.5 Ao —13.70 — 5.72 4.84 10.82
Ao’ 0.89 — 0.63 — 0.71 0.24
Ay 0.44 0.27 — 0.25 — 0.46
AT —12.37 — 6.08 3.88 10.60
Aq 2.17 2.26 2.38 2.45
A4 5.25 1.62 — 2.95 — 5.63
0.7 A 1.15 9.13 19.69 25.68
Ao’ — 094 0.11 2.96 5.68
A" — 0.06 — 041 0.32 0.27
AT 0.15 8.83 22.97 31.63
Ay 2.34 243 2.54 2.61
AL — 0.51 — 494 —10.51 —13.65
0.9 Al 11.51 19.49 30.05 36.04
Ao 0.39 2.88 8.13 12.10
A" — 047 — 0.33 1.03 2.64
AT 11.43 22.04 39.21 50.78
A 245 2.54 2.66 2.73
A — 5.32 —10.06 —16.05 —19.40

explain a small increase in wx® and a somewhat bigger
increase in wg®, which is much more sensitive to the
structure of the wings.

It should be mentioned that qualitatively the above
ideas are not in any serious contradiction with the guess
of Marshall and Lowde!® who conjectured that the
effects of SRO would be to deplete (for the antiferro-
magnetic case under study) the area at w=0 for small
K (and to increase it for large K) values-much as a
Dirac § function with suitable amplitude would—and
to uniformly renormalize the line shape for nonzero
frequencies. Quantitatively, however, our results differ
from this picture in two respects. First, the total
depletion (for small K values) of the area under the
curve is clearly about a third smaller than that antici-
pated in Ref. 15. Secondly, the renormalization of the
finite frequency line shape is not likely to be frequency
independent because due to the SRO the relative change
in the fourth frequency moment is clearly quite different
than that in the second frequency moment.

Iv. LINE SHAPE

Using the phenomenological approximation whereby
the generalized, frequency wave-vector-dependent
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F1c. 1. Plots of the scattering function, R(K,w)=8(K, w)/3X, in meV-L, versus the frequency, in meV, for small K vectors.
The scattering is in the (110) plane with K,=0. The K vectors used in the calculations of the line shape are those listed. The ex-
perimental K values average out to give the listed K values. The solid curves are based on the two parameter Gaussian approximation
for the generalized diffusivity. The dashed curve in Fig. 1(a) is based on the Gram-Charlier series representation of the line shape
[this is not shown in Figs. 1(a)-1(c) because it is negative in certain regions and therefore nonphysical].

diffusivity is represented as a two-parameter Gaus-
sian,!7:20:21:32 we can construct an expression for F(K,w)
which conserves the first five frequency moments
(w™x, for n=0, ..., 5. Then using Eq. (2.7a) we can
find the line shape $*(K,w). The final result is

32 See for example, P. C. Martin, in 1967 Les Houche Lectures:

Many Body Problem, edited by C. De Witt and R. Balian (Gordon
and Breach, Science Publishers, Inc., New York, 1968).

S(K,w)=38%(K,w)
=3 (1 — o) (/) (D (K o) /

[w—- 2/v/7)D(K,0) /0 o dxe”:r

+HDOXw)F, 41)
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where
D(K,w)=+/7T (K){w)xe " I*® /(o) ,

() () 1/2
I'(K)= . (43)
[2[<¢°°>K<w4>x— (<w2>x)2]] (

Note that Egs. (4.2) and (4.3) depend only upon
the ratios of the moments {(w**)x/{w’)x for n=1 and 2.
As the fourth moment is known only to the accuracy

(4.2)
and
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of the first two dominant terms in the high-temperature
series expansion, therefore for the sake of consistency
we have only the first two terms in the corresponding
high-temperature series expansions of the second and
the zeroth moments. Within this first-order SRO
approximation—whereby the results for the frequency
moments themselves are likely to be accurate to about
159, at the temperature of interest, i.e., T=3.5Ty—we
have numerically computed the line shape $§(K,w) for

Kz=0.1
Kio=0.5

R(K,w)

.04

Kz=0.1
Kno=0.7

.08+

R(K,w)

.04+

—

(d)

F1c. 2. Plot of R(Kw)=8K,w)/3X (in meV™) versus the frequency (in meV) for various K vectors as listed. The scattering
is within the (110) plane. Consequently, K,=K,=Ki1/V2Z. The experimental values of the components of the K vectors (i.e.,
K110 and K) are centered (to within 0.1 &) around the listed K vectors. The solid curves are the result of the two-parameter
approximation for the generalized diffusivity and the dashed curve the result of the Gram-Charlier series. The Gram-Charlier series
result does not appear in Fig. 2(a) because it has a negative region for small K values and so is nonphysical. The two curves are al-
most identical in Figs. 2(c), 2(g), 2(k), 2(), and 2(p) and so the line shape based on the Gram-Charlier series is not recorded

separately.
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F16. 2 (continued)

various values of K which are of interest in analyzing
the experimental data of Windsor et al.°

It should be emphasized that because the line shape
8(K,w) is renormalized by the factor (w°)x [see Eq. (4.1)
and note that except for this factor in the numerator,
the rest of the expression only involves ratios of the
moments (w?")x/{w’)x ], and because the first two
terms in the high-temperature series expansion for
(@”)x in general represent the zeroth moment only to
an accuracy of about 109, the area under our computed
curves for $(K,w) will also be incorrect by about this
amount. And this inaccuracy in the area is over and
above the possible inaccuracy in the frequency de-

pendent shape of the curve §(Kw). We have plotted
the approximate line shape §(K,w) in Figs. 1 and 2 and
the results are displayed so that they may be readily
compared with the experimental determination of the
corresponding lineshape from the neutron-scattering
experiments of Windsor ef al. The agreement between
the experimental and the parameter-free theoretical
results is in general reasonable considering the possible
inaccuracy, i.e., up to about 159, of the frequency
moments and the fact that we are using an approximate,
phenomenological procedure for constructing the line
shape.

It is interesting to compare these two-parameter
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F1c. 3. Plot of D(K, w=0) versus the magnitude of the wave
vector K. The experimental points are obtained from the widths
of the best fitting Lorentzian line shapes to the experimental data
in Fig. 1. The curves are based on the two parameter Gaussian
approximation for the generalized diffusivity. Both curves refer
to the case of experimental interest, i.e., S=4% and 7= —0.28 meV
but the solid curve is for infinite temperature while the dashed
curve utilizes the first temperature correction for the frequency
moments for RbMnF; with 77=293°K. The results are essentially
isotropic for these small K vectors (we have used K, =K,, K,=0,
so that |K|=V2K,). The discrepancy between the experimental
results and the theoretical (dashed) curve are not too great.
Indeed, the differences are within the accuracy expected con-
sidering that our theoretical result is subject to the various
uncertainties discussed in Sec. V.

Gaussian diffusivity results with the predictions of the
Gram-Charlier series representation. This represen-
tation was suggested by Collins and Marshall** and its
extension to finite temperatures should yield the
following form:

3wX w®
S(Kw)= ———————< )x g2
1—ehe (2ma?)\/2
w?  Ow?
Xl:l-l-?m(- - ——+3>] , (44)
ot a2
where
ot {0k
K= — —% (4.5)
24 (*)x

o= {wx/{")x. (4.6)

The Gram-Charlier representation results have been
computed (again by using only the first two terms in the
high-temperature expansion of the moments (w?")x
for n=0, 1, 2) and are given as dashed curves in Figs.
1(d), 2(b), 2(d)-2(f), 2(h)-2(j), 2(m)-2(0), and 2(q)-
2(t). Because for small K values the Gram-Charlier
series results are grossly inadequate, therefore they
have not been plotted for |K|<0.3 AL For large K
values, the Gram-Charlier expansion gives relatively
reasonable representation of the lineshape. Indeed, for
many of the given plots the disagreement between the
results of the two-parameter Gaussian approximation

AND D.

G. McFADDEN 1

and the Gram-Charlier series expansion is too small to
be adequately displayed.

V. CONCLUDING REMARKS

The spectral line shape computed in the preceding
section is found to be in acceptable agreement with the
parameter-free experimental observation of §(Kw) in
paramagnetic RbMnF;. The theoretical estimate of the
line shape is subject to several possible uncertainties.
These uncertainties fall roughly into two distinct
categories: (a) those that arise because of the approxi-
mate nature of the system Hamiltonian (b) and those
that are the result of approximations made in deriving
the given theoretical expressions.

The approximations associated with the physical
model being analyzed can be farther subdivided into
two classes: To the first class belongs the assumption
that the spin degrees of freedom are not coupled to the
lattice degrees of freedom. The second class relates to
the actual representation of the Hamiltonian dealing
with the spin degrees of freedom and to any approxi-
mations that are thereby introduced.

The first of these assumptions ignores the possibility
of magnetovibrational scattering. Realistic estimates of
the inaccuracy caused by this assumption cannot be
made. The hope, however, is that the major renormali-
zation of the purely magnetic scattering results, i.e.,
due to the magnetovibrational effects, will be in the
neighborhood of small frequencies. The measurement
of 8§(K,w) for small frequencies is in any case subject
to much uncertainty due to the presence of sizable
amounts of elastic nuclear scattering.

The second of these assumptions deals with the use
of isotropic, nearest neighbor Heisenberg exchange
model. This assumption is perhaps the least serious
because the low-temperature measurements of Windsor
and Stevenson?® clearly show that the nearest-neighbor
exchange dominates. The neglect of the next-nearest-
neighbor exchange should therefore cause uncertainties
of only a few percent.

The second category of approximations dealing with
the theoretical derivation of the spectral line shape
involve the uncertainties associated with the assump-
tion of a two-parameter Gaussian representation for the
generalized diffusivity as well as with the calculation
of the frequency moments (w**)g, #=0, 1 and 2 (upon
which the determination of the parameters of the
diffusivity depends). As our previous studies” have
shown, the two-parameter Gaussian representation for
the diffusivity is adequate for studying $(Kw) at
elevated temperatures. Therefore, the major un-
certainty in this category is probably caused by the
approximate evaluation of the frequency moments
themselves. As the SRO contributions to the fourth
moment have only very crudely been estimated by
keeping only the first finite-temperature correction
(beyond the infinite temperature term), therefore the
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given estimate for the fourth moment may be subject
to possible errors of several percent. The zeroth and the
second moment, on the other hand, are probably
accurate to a few percent.

It is instructive to examine the experimental and the
theoretical results for the spin diffusion. Windsor ef al.25
have used their small-K results for $(K,») and analyzed
them in terms of the best-fitting Lorentzian line
shapes, i.e.,

15(S+1)DK?
SKw)= ————. 5.1)
7 w4+ (DK?)?
They have given their results in the form of a plot of
DK? against the average value of K. (Here D is the spin-
diffusion constant).

In Fig. 3 we have plotted our D(K,0) against the
average value of K for infinite temperatures as well as
for the temperature of interest. [Note that D(XK,0)
should be the analogue of DK? for small K.] The finite-
temperature results for D(K,0) were obtained in the
following way : In the expression

) ({w?) )32 W)L/
D(K,0)=\/( ) (()x)*/ (2")x) 5.2)

[ x(wt)x — ({(w?)x) ]2

[compare with Egs. (4.2) and (4.3)], we used the results
for the moments, {(w?")x correct only to the first two
dominant powers in%(87). This procedure would seem
to be somewhat wasteful in the sense that it does not
make use of the most accurate expressions for (w’)x
and (w?)k, but it was adopted to get a feel for the maxi-
mum discrepancy that the theoretical results have with
respect to the experimental results. The relative fit
of the experimental results and the above theoretical
estimates is seen to be within the limits of accuracy
that would be placed on the result given in Eq. (5.2)
because of the inaccuracy of the frequency moments
(within the approximation whereby only the first
finite-temperature correction is retained).

It is interesting to compare the experimental results
for the magnitude of the spin diffusion D, i.e.,

D=lim [D(K,0)/K?]

(5.3)

with those obtained from Egs. (5.2) and (5.3). Using
only the first temperature correction for the moments
(w?™)x in these equations we find

D=1.60D (). (5.4)

On the other hand, if we use the more accurate calcu-
lations for (w°)x and (w?)x given in Egs. (3.5) and (3.6),
we find

D=1.40D(). (5.5)

In Egs. (5.4) and (5.5), D(«) denotes the correspond-
ing result for D in the infinite-temperature limit.

The experimental result for D obtained by Windsor
et al. is quoted to be=8.041.0 meV A2 It is convenient
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F1c. 4. Effect of finite temperature on frequency Fourier
transform of the self-correlation function. The Fourier transform
is plotted against the reduced frequency and refers to the linear
chain with isotropic nearest-neighbor exchange and S= ., For
the linear chain, §=4pI1X.
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Fic. 5. Effect of finite temperature on the time-dependent self-
correlation function for the linear chain with isotropic nearest-
neighbor exchange and S= . The ordinate is an appropriate
Fourier transform of the corresponding curves in Fig. 4.
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Fic. 6. Effect of finite temperature on frequency Fourier
transform of the self-correlation function are displayed by plotting
the Fourier transform against the reduced frequency. The plot
refers to a two-dimensional square net with isotropic nearest-
neighbor exchange and .S= «. For the square net, 6=831X.

to transform to the dimensionless parameter A
A(T)=D/2Ia(3X)'12, (5.6)

where ao is the lattice constant of RbMnF; at room
temperature [note that ag~4.34 AJ. Our theoretical
results for A, i.e.,

A(T=293°K)=0.360,
A(T= )=0.257,

(5.7a)
(5.7b)

where we have used the most accurate values of the
moments, should be compared with the experimental
result

[A(T) Jexps=0.27240.03. (5.7¢)

Considering the approximate nature of the finite
temperature result for the frequency moments, the
results (5.7a) and (5.7c) are in acceptable agreement.
It should be mentioned here that Huber® has recently
used the sixth frequency moment, (w®)x, given in Ref. 17
to make an estimate of the accuracy of the spin-diffusion
constant as given by the two-parameter Gaussian
approximation. His conclusion is that this procedure
should lead to values for D which are within 109, of the
correct value. In view of the fact that A(T) is subject
to the above mentioned inaccuracies, the agreement
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Fic. 7. Demonstration of the effect of finite temperature on
frequency Fourier transform of the self-correlation function. The
Fourier transform is plotted against the reduced frequency and
refers to the simple cubic lattice with isotropic nearest-neighbor
exchange and S=c. For the simple cubic lattice, §=128IX.

between " the experiment and the theory is entirely
acceptable.

¢ 'In conclusion it should be mentioned that we have
also computed the effects of SRO upon the time-
dependent self-correlation function (S¢?(£)S¢?(0)) and
its frequency Fourier transform. These results are
obtained by using Egs. (4.1)-(4.3). In order not to get
involved with real and imaginary parts of the correlation
{So*(1)So*(0)) we have plotted only the infinite (i.e.,
classical) spin results for which the imaginary part is
vanishing.

A study of Figs. 4-7, where these results are plotted,
reveals the evolution of the following interesting
structure with the increase in the SRO (a measure of
the SRO is the largeness of the value of ). As the SRO
increases, the Fourier transform (S¢?(£)S¢?(0)). begins
to develop a hump. The prominence of this hump is
found to be greater the lower the dimensionality.
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